Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar.

Identifieur interne : 003452 ( Main/Exploration ); précédent : 003451; suivant : 003453

The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar.

Auteurs : Robin D. Mellway [Canada] ; Lan T. Tran ; Michael B. Prouse ; Malcolm M. Campbell ; C Peter Constabel

Source :

RBID : pubmed:19395405

Descripteurs français

English descriptors

Abstract

In poplar (Populus spp.), the major defense phenolics produced in leaves are the flavonoid-derived proanthocyanidins (PAs) and the salicin-based phenolic glycosides. Transcriptional activation of PA biosynthetic genes leading to PA accumulation in leaves occurs following herbivore damage and mechanical wounding as well as infection by the fungal biotroph Melampsora medusae. In this study, we have identified a poplar R2R3 MYB transcription factor gene, MYB134, that exhibits close sequence similarity to the Arabidopsis (Arabidopsis thaliana) PA regulator TRANSPARENT TESTA2 and that is coinduced with PA biosynthetic genes following mechanical wounding, M. medusae infection, and exposure to elevated ultraviolet B light. Overexpression of MYB134 in poplar resulted in transcriptional activation of the full PA biosynthetic pathway and a significant plant-wide increase in PA levels, and electrophoretic mobility shift assays showed that recombinant MYB134 protein is able to bind to promoter regions of PA pathway genes. MYB134-overexpressing plants exhibited a concomitant reduction in phenolic glycoside concentrations and other minor alterations to levels of small phenylpropanoid metabolites. Our data provide insight into the regulatory mechanisms controlling stress-induced PA metabolism in poplar, and the identification of a regulator of stress-responsive PA biosynthesis constitutes a valuable tool for manipulating PA metabolism in poplar and investigating the biological functions of PAs in resistance to biotic and abiotic stresses.

DOI: 10.1104/pp.109.139071
PubMed: 19395405
PubMed Central: PMC2689947


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar.</title>
<author>
<name sortKey="Mellway, Robin D" sort="Mellway, Robin D" uniqKey="Mellway R" first="Robin D" last="Mellway">Robin D. Mellway</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
</author>
<author>
<name sortKey="Prouse, Michael B" sort="Prouse, Michael B" uniqKey="Prouse M" first="Michael B" last="Prouse">Michael B. Prouse</name>
</author>
<author>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19395405</idno>
<idno type="pmid">19395405</idno>
<idno type="doi">10.1104/pp.109.139071</idno>
<idno type="pmc">PMC2689947</idno>
<idno type="wicri:Area/Main/Corpus">003583</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003583</idno>
<idno type="wicri:Area/Main/Curation">003583</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003583</idno>
<idno type="wicri:Area/Main/Exploration">003583</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar.</title>
<author>
<name sortKey="Mellway, Robin D" sort="Mellway, Robin D" uniqKey="Mellway R" first="Robin D" last="Mellway">Robin D. Mellway</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia</wicri:regionArea>
<wicri:noRegion>British Columbia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
</author>
<author>
<name sortKey="Prouse, Michael B" sort="Prouse, Michael B" uniqKey="Prouse M" first="Michael B" last="Prouse">Michael B. Prouse</name>
</author>
<author>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Basidiomycota (physiology)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Flavonoids (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (radiation effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>Metabolic Networks and Pathways (radiation effects)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phenols (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (cytology)</term>
<term>Populus (genetics)</term>
<term>Populus (microbiology)</term>
<term>Populus (radiation effects)</term>
<term>Proanthocyanidins (biosynthesis)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Protein Binding (MeSH)</term>
<term>Stress, Physiological (radiation effects)</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Ultraviolet Rays (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Basidiomycota (physiologie)</term>
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (composition chimique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Flavonoïdes (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénols (métabolisme)</term>
<term>Populus (cytologie)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Proanthocyanidines (biosynthèse)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Rayons ultraviolets (MeSH)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (effets des radiations)</term>
<term>Stress physiologique (effets des radiations)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Voies et réseaux métaboliques (effets des radiations)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Proanthocyanidins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Flavonoids</term>
<term>Phenols</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Proanthocyanidines</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Régions promotrices (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Flavonoïdes</term>
<term>Phénols</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Metabolic Networks and Pathways</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Protein Binding</term>
<term>Ultraviolet Rays</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Chromatographie en phase liquide à haute performance</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Liaison aux protéines</term>
<term>Phylogenèse</term>
<term>Rayons ultraviolets</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In poplar (Populus spp.), the major defense phenolics produced in leaves are the flavonoid-derived proanthocyanidins (PAs) and the salicin-based phenolic glycosides. Transcriptional activation of PA biosynthetic genes leading to PA accumulation in leaves occurs following herbivore damage and mechanical wounding as well as infection by the fungal biotroph Melampsora medusae. In this study, we have identified a poplar R2R3 MYB transcription factor gene, MYB134, that exhibits close sequence similarity to the Arabidopsis (Arabidopsis thaliana) PA regulator TRANSPARENT TESTA2 and that is coinduced with PA biosynthetic genes following mechanical wounding, M. medusae infection, and exposure to elevated ultraviolet B light. Overexpression of MYB134 in poplar resulted in transcriptional activation of the full PA biosynthetic pathway and a significant plant-wide increase in PA levels, and electrophoretic mobility shift assays showed that recombinant MYB134 protein is able to bind to promoter regions of PA pathway genes. MYB134-overexpressing plants exhibited a concomitant reduction in phenolic glycoside concentrations and other minor alterations to levels of small phenylpropanoid metabolites. Our data provide insight into the regulatory mechanisms controlling stress-induced PA metabolism in poplar, and the identification of a regulator of stress-responsive PA biosynthesis constitutes a valuable tool for manipulating PA metabolism in poplar and investigating the biological functions of PAs in resistance to biotic and abiotic stresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19395405</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>150</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>924-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.139071</ELocationID>
<Abstract>
<AbstractText>In poplar (Populus spp.), the major defense phenolics produced in leaves are the flavonoid-derived proanthocyanidins (PAs) and the salicin-based phenolic glycosides. Transcriptional activation of PA biosynthetic genes leading to PA accumulation in leaves occurs following herbivore damage and mechanical wounding as well as infection by the fungal biotroph Melampsora medusae. In this study, we have identified a poplar R2R3 MYB transcription factor gene, MYB134, that exhibits close sequence similarity to the Arabidopsis (Arabidopsis thaliana) PA regulator TRANSPARENT TESTA2 and that is coinduced with PA biosynthetic genes following mechanical wounding, M. medusae infection, and exposure to elevated ultraviolet B light. Overexpression of MYB134 in poplar resulted in transcriptional activation of the full PA biosynthetic pathway and a significant plant-wide increase in PA levels, and electrophoretic mobility shift assays showed that recombinant MYB134 protein is able to bind to promoter regions of PA pathway genes. MYB134-overexpressing plants exhibited a concomitant reduction in phenolic glycoside concentrations and other minor alterations to levels of small phenylpropanoid metabolites. Our data provide insight into the regulatory mechanisms controlling stress-induced PA metabolism in poplar, and the identification of a regulator of stress-responsive PA biosynthesis constitutes a valuable tool for manipulating PA metabolism in poplar and investigating the biological functions of PAs in resistance to biotic and abiotic stresses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mellway</LastName>
<ForeName>Robin D</ForeName>
<Initials>RD</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tran</LastName>
<ForeName>Lan T</ForeName>
<Initials>LT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prouse</LastName>
<ForeName>Michael B</ForeName>
<Initials>MB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Campbell</LastName>
<ForeName>Malcolm M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C Peter</ForeName>
<Initials>CP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>FJ573150</AccessionNumber>
<AccessionNumber>FJ573151</AccessionNumber>
<AccessionNumber>FJ573152</AccessionNumber>
<AccessionNumber>FJ588548</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005419">Flavonoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044945">Proanthocyanidins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Signal Behav. 2009 Aug;4(8):790-2</RefSource>
<PMID Version="1">19820325</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005419" MajorTopicYN="N">Flavonoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044945" MajorTopicYN="N">Proanthocyanidins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014466" MajorTopicYN="Y">Ultraviolet Rays</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19395405</ArticleId>
<ArticleId IdType="pii">pp.109.139071</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.139071</ArticleId>
<ArticleId IdType="pmc">PMC2689947</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Jun;1(3):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Oct;12(10):1863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11041882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Nov 15;19(22):6150-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11095727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11128003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11128004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Dec;12(12):2383-2394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Apr;13(4):853-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jun;46(3):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Sep;13(9):2099-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11549766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(3):319-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2001 Dec;3(6):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11813993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Jun;5(3):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1085-1097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Feb;5(2):171-179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Nov;22(15-16):1137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(5):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12472686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jan 17;299(5605):396-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12532018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Jan;18(1):53-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Jun;23(8):527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol. 2003 Feb;77(2):226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12785063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 22;278(34):31647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1689-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Oct;137(2):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12898383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1992 Dec 15;122(2):383-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1336757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2514-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(1):104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Apr;7(2):202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(7):R46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15239831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):366-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2004 Jun;5(2):150-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(4):513-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15309534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):48205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(1):22-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15361138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Oct;219(6):936-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15605173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jan;57(2):155-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Jun;8(3):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Jul;46(7):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15870094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Sep;145(2):298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15959818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Sep;66(18):2127-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(1):62-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2966-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 Nov;7(6):581-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Apr;47(4):457-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16446312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Apr;18(4):831-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1274-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Jan;87(1):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16634316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:405-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1216-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(4):617-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2007 Jun;34(2):105-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(3):545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17208963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Feb;49(2):157-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14210-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18772380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1028-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19098092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1991 Apr;7(2):203-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2059845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1997 Jan;12(1):22-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1990 Dec;4(12B):2235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2279697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1988 Jan;14(1):1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1984 Mar;10(3):499-520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1998 May;46(5):1887-1892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29072454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6326095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Jun;7(6):859-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7599647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Dec;109(4):1159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8539286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Apr;9(4):611-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jan 1;26(1):358-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9399873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1998 Jul;39(7):769-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9729900</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
<name sortKey="Prouse, Michael B" sort="Prouse, Michael B" uniqKey="Prouse M" first="Michael B" last="Prouse">Michael B. Prouse</name>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Mellway, Robin D" sort="Mellway, Robin D" uniqKey="Mellway R" first="Robin D" last="Mellway">Robin D. Mellway</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003452 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003452 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19395405
   |texte=   The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19395405" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020